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ABSTRACT
We analyse the structure and connectivity of the distinct morphologies that define the cos-
mic web. With the help of our multiscale morphology filter (MMF), we dissect the matter
distribution of a cosmological � cold dark matter N-body computer simulation into cluster,
filaments and walls. The MMF is ideally suited to address both the anisotropic morphologi-
cal character of filaments and sheets, and the multiscale nature of the hierarchically evolved
cosmic matter distribution. The results of our study may be summarized as follows. (i) While
all morphologies occupy a roughly well-defined range in density, this alone is not sufficient to
differentiate between them given their overlap. Environment defined only in terms of density
fails to incorporate the intrinsic dynamics of each morphology. This plays an important role in
both linear and non-linear interactions between haloes. (ii) Most of the mass in the Universe
is concentrated in filaments, narrowly followed by clusters. In terms of volume, clusters only
represent a minute fraction and filaments not more than 9 per cent. Walls are relatively in-
conspicuous in terms of mass and volume. (iii) On average, massive clusters are connected to
more filaments than low-mass clusters. Clusters with M ∼ 1014 M� h−1 have on average two
connecting filaments, while clusters with M ≥ 1015 M� h−1 have on average five connecting
filaments. (iv) Density profiles indicate that the typical width of filaments is 2 h−1 Mpc. Walls
have less well-defined boundaries with widths between 5 and 8 Mpc h−1. In their interior,
filaments have a power-law density profile with slope γ ≈ −1, corresponding to an isothermal
density profile.

Key words: methods: data analysis – methods: numerical – cosmology: theory – large-scale
structure of Universe.

1 IN T RO D U C T I O N

The megaparsec matter distribution in the Universe represents a
dynamical system of great structural and topological complexity,
the cosmic web.

Early attempts to map the large-scale distribution of galaxies
in the Universe (Gregory, Thompson & Tifft 1978; de Lapparent,
Geller & Huchra 1986; Geller & Huchra 1989; Shectman et al.
1996) revealed that galaxies are far from being evenly distributed
across the nearby Universe. On the contrary, the mass distribution
delineated by galaxies seems to form an intricate network of com-
pact and dense associations interconnected by tenuous ‘bridges or
‘filaments’ surrounded by surprisingly vast empty regions (Kirshner
et al. 1981). These preliminary studies suggested that the Universe
on the large scales could be described as a cellular system (Joeveer &
Einasto 1978) or a cosmic web (Bond, Kofman & Pogosyan 1996).
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This has been confirmed in recent times by large galaxy surveys
like the Two-degree Field Galaxy Redshift Survey (2dFGRS; Col-
less et al. 2003), the Sloan Digital Sky Survey (SDSS; e.g. Tegmark
et al. 2004) and the Two-Micron All-Sky Survey (2MASS) redshift
survey (Huchra et al. 2005).

The advent of these large 3D maps of the local Universe unveiled
a cosmos of considerable richness and complexity, featuring intri-
cate filamentary structures. These structures can be seen on scales
from a few megaparsecs up to tens and even hundreds of mega-
parsecs. They include immense elongated and semiplanar patterns
(Diaferio & Geller 1997; Tittley & Henriksen 2001; Bharadwaj
& Pandey 2004; Ebeling, Barrett & Donovan 2004; Pimbblet &
Drinkwater 2004; Pimbblet, Drinkwater & Hawkrigg 2004; Stevens
et al. 2004; Pimbblet 2005a) and include huge wall-like structures
such as the Coma Great Wall (Geller & Huchra 1989) and the
Sloan Great Wall (Gott et al. 2005), with its size being more than
400 h−1 Mpc, the largest known structure in the nearby Universe.
Similar web-like structures have also been discovered at high red-
shifts (Broadhurst et al. 1990; Cohen et al. 1996; Ouchi et al. 2004).
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1.1 Gravitational formation

The cosmic web can be seen as the most salient manifestation of
the anisotropic nature of gravitational collapse, the motor behind
the formation of structure in the cosmos (Peebles 1980). N-body
computer simulations have profusely illustrated how a primordial
field of tiny Gaussian density perturbations transforms into a pro-
nounced and intricate filigree of filamentary features, dented by
dense compact clumps at the nodes of the network (Jenkins et al.
1998; Colberg, Krughoff & Connolly 2005a; Springel et al. 2005;
Dolag et al. 2006). The filaments connect to the cluster nodes and
act as the transport channels along which matter flows into the
clusters.

Fundamental understanding of anisotropic collapse on cosmolog-
ical scales came with the seminal study by Zel’dovich (1970), who
recognized the key role of the large-scale tidal force field in shaping
the cosmic web (also see Icke 1973). In addition to the anisotropic
nature of gravitational collapse, the multiscale character of the cos-
mic mass distribution is also an important characteristic signature
of the gravitational formation of structure (Zel’dovich 1970; Icke
1973; Eisenstein & Loeb 1995; Bond, Kofman & Pogosyan 1996;
Eisenstein, Loeb & Turner 1997; van de Weygaert & Bond 2008;
Shandarin & Sunyaev 2009). Cosmic structure formation is a hierar-
chical process as a result of the amplitude distribution of fluctuations
over the different scales. Small-scale fluctuations in scenarios with
a primordial power spectrum P(k) ∝ kn, where n > −3, have a larger
amplitude than those on larger scales. As a result, collapsed clumps
of matter will aggregate into larger systems and eventually merge
to form even larger structures.

The description of the megaparsec matter distribution as an inter-
connected network or as a cosmic web is not a coincidence. While
the Zel’dovich approximation describes the evolution of a cellular
distribution made up of pancakes, it does not really offer an ex-
plicit dynamical explanation for the observed connectivity between
morphologies. Early computer simulations already indicated the
close connection between each morphological component, namely
that clusters sit at the intersection of filaments and filaments are
formed at the intersection of walls (Doroshkevich et al. 1980; Melott
1983; Shapiro, Struck-Marcell & Melott 1983; Pauls & Melott 1995;
Sathyaprakash, Sahni & Shandarin 1996). Bond et al. (1996) intro-
duced the ‘cosmic web’ theory, which provides a natural explanation
for the emergence of the filamentary network as well as the relation
between the morphological components of the cosmic web. The the-
ory emphasizes the close relation between the peaks in the density
field and the overall web-like network: knowledge of the tidal field
at a few relevant locations in a region provides all the information
needed to predict the resulting large-scale matter configuration. In
the primordial density field, this can be traced back to the simple
quadrupolar pattern in the density distribution implied by a local
shear configuration (see van de Weygaert & Bertschinger 1996; van
de Weygaert & Bond 2008). This distribution will naturally evolve
into a cluster–filament–cluster configuration, the structural basis of
the cosmic web.

1.2 Web analysis

Despite the multitude of elaborate qualitative descriptions, it has
remained a major challenge to characterize the structure, geometry
and topology of the cosmic web. Quantities as basic and general
as the mass and volume content of clusters, filaments, walls and
voids are still not well established or defined. Since there is not
yet a common framework to objectively define filaments and walls,

the comparison of results of different studies concerning properties
of the filamentary network – such as their internal structure and
dynamics, evolution in time and connectivity properties – is usually
rendered cumbersome and/or difficult.

The overwhelming complexity of the individual structures as well
as their connectivity, the lack of structural symmetries, its intrinsic
multiscale nature and the wide range of densities that one finds in
the cosmic matter distribution have prevented the use of a simple
and straightforward tool box. Over the years, a variety of heuristic
measures were proposed to analyse specific aspects of the spatial
patterns in the large-scale Universe. It is only in recent years that
these have led to a more solid and well-defined machinery for the
description and quantitative analysis of the intricate and complex
spatial patterns of the cosmic web. Nearly without exception, these
methods borrow extensively from other branches of science such
as image processing, mathematical morphology, computational ge-
ometry and medical imaging.

The connectedness of elongated supercluster structures in the
cosmic matter distribution was first probed by means of percolation
analysis, introduced and emphasized by Zel’dovich and cowork-
ers (Zeldovich, Einasto & Shandarin 1982; Shandarin & Zel’dovich
1989; Shandarin, Sheth & Sahni 2004; Shandarin & Sunyaev 2009),
while a related graph-theoretical construct, the minimum spanning
tree of the galaxy distribution, was extensively probed and anal-
ysed by Bhavsar and collaborators (Barrow et al. 1985; Graham
& Clowes 1995; Colberg 2007) in an attempt to develop an objec-
tive measure of filamentarity. Finding filaments joining neighbour-
ing clusters has been tackled, using quite different techniques, by
Colberg et al. (2005a) and Pimbblet (2005b).

More general filament finders have been put forward by a number
of authors. Following specific physical criteria, Gonzalez & Padilla
(2010) recently proposed an interesting and promising combination
of a tessellation-based density estimator and a dynamical binding
energy criterion. A thorough mathematical non-parametric formal-
ism involving the medial axis of a point cloud, as yet for 2D point
distributions, has recently been proposed by Genovese et al. (2010).
It is based on a geometric representation of filaments as the medial
axis of the data distribution. Also solidly rooted within a geometric
and mathematical context is the more generic geometric inference
formalism developed by Chazal, Cohen-Steiner & Mérigot (2009).
It allows the recovery of geometric and topological features of the
supposedly underlying density field from a sampled point cloud
on the basis of distance functions. Stoica et al. (2005) and Stoica,
Martı́nez & Saar (2007, 2010) use a generalization of the classical
Candy model to locate and catalogue filaments in galaxy surveys.
This approach has the advantage that it works directly with the orig-
inal point process and does not require the creation of a continuous
density field. However, computationally it is very demanding.

The more recent formalisms that are intent on characterizing the
full range of web-like formalisms usually exploit the morpholog-
ical information in the gradient and Hessian of the density field
or potential field, i.e. the tidal field (see e.g. Aragón-Calvo et al.
2007a,b; Hahn et al. 2007a,b; Forero-Romero et al. 2008; Sousbie
et al. 2008a,b; Bond, Strauss & Cen 2010a,b). The Morse theory
(see Colombi, Pogosyan & Souradeep 2000) forms the basis of the
skeleton analysis by Novikov, Colombi & Doré (2006) (2D) and
Sousbie et al. (2008a) (3D). It identifies morphological features
with the maxima and saddle points in the density field and results
in an elegant and mathematically rigorous tool for filament identi-
fication. However, it is computationally intensive, focuses mostly
on the filaments and is strongly dependent on the smoothing scale
of the density field. A more elaborate classification scheme on the
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basis of the manifolds in the tidal field – involving all morpholog-
ical features in the cosmic matter distribution – has been proposed
by Hahn et al. (2007a) (also see Hahn et al. 2007b; Forero-Romero
et al. 2008). Its great virtue is that it is based on the structure of the
tidal field, which links it directly to our theoretical understanding
of the formation and evolution of the cosmic web.

Instead of using the tidal field configuration, one may also try to
link directly to the morphology of the density field itself. Usually,
this allows a more detailed view of the intricacies of the multiscale
matter distribution, although it is usually more sensitive to noise and
more indirectly coupled to the underlying dynamics of structure for-
mation than the tidal field morphology. A single scale dissection of
the large-scale density field into its various morphological compo-
nents based on the Hessian of the density field has been followed by
Bond et al. (2010a) and applied to N-body simulations and galaxy
redshift samples (also see Bond et al. 2010b; Choi et al. 2010).

In this study, we follow the more elaborate multiscale formalism
of the multiscale morphology filter (MMF), introduced by Aragón-
Calvo et al. (2007b). The MMF assigns a morphology of the local
density field in terms of its multiscale second-order variations in
the local density field. Instead of restricting the analysis to one
particular scale, the MMF explicitly addresses the multiscale nature
of the cosmic density field by evaluating the density field Hessian
over a range of spatial scales and determining at which scales and
locations the various morphological signatures are most prominent.
It represents a complete and self-consistent framework that allows
us to identify and isolate specific morphologies in an objective way
(see Fig. 1). A somewhat similar multiscale approach is the metric
space technique described by Wu, Batuski & Khalil (2009), who
applied it to a morphological analysis of the DR5 of the SDSS.

A more recent development is that of the Spineweb procedure
(Aragón-Calvo et al. 2008, 2010), which traces the various features
of the cosmic web on pure topological grounds by invoking the
watershed transform. The watershed transform is a key instrument

Figure 1. MMF segmentation of the mass distribution in the cosmic web.
The cosmic web is delineated by filaments (dark grey) and walls (light grey).
Clusters (dark grey) are located at the intersection of filaments. Each of these
elements is indicated by isodensity contours (on a Gaussian scale of Rf =
2 h−1 Mpc). Only the largest structures are shown for clarity.

for the segmentation of a density field, and as such is also ideally
suited for tracing the boundaries between the identified segments.
Spineweb identifies the filaments and sheets with the boundaries of
watershed basins. The latter are the influence areas in and around
cosmic voids.

1.3 Cosmic environment and galaxy formation

One of the main reasons for our interest in outlining the filamentary
cosmic web concerns the question whether and to what extent the
web-like environment influences the properties and evolution of
galaxies. Most studies of environmental influences limit themselves
to the density, but various indications argue for a more intricate
connection.

In at least one aspect, we may immediately suspect a significant
relation between the tidally induced morphological nature of the
cosmic environment and the galaxy. The tidally induced rotation of
galaxies implies a link between the galaxy formation process and the
surrounding external matter distribution. With the cosmic web as a
direct manifestation of the large-scale tidal field, we would therefore
expect a connection with the angular momentum of galaxies or
galaxy haloes. The theoretical studies of Sugerman, Summers &
Kamionkowski (2000) and Lee & Pen (2000) were important in
pointing out that this connection should be visible in the orientation
of galaxy spins with the surrounding large-scale structure.

Equipped with some of the filament and wall detection techniques
described above, recent N-body simulations have been able to find,
amongst others, that the filamentary or sheet-like nature of the envi-
ronment has a distinct influence on the shape and spin orientation of
dark matter haloes (Aragón-Calvo et al. 2007a; Hahn et al. 2007a,b;
Paz, Stasyszyn & Padilla 2008; Hahn 2009; Hahn et al. 2009; Zhang
et al. 2009). In the case of haloes located in large-scale walls, they
seem to agree that both the spin vector and the major axis of inertia
lie in the plane of the wall. In the case of the alignment of haloes
with their embedding filaments, Aragón-Calvo et al. (2007a) and
Hahn et al. (2007a) found evidence for a mass and redshift depen-
dence, which has been confirmed by the studies of Paz et al. (2008)
and Zhang et al. (2009).

While the MMF (Aragón-Calvo et al. 2007b) proved success-
ful in elucidating halo shape and spin alignment characteristics in
filaments and sheets in N-body simulations (Aragón-Calvo et al.
2007a; Zhang et al. 2009), in recent work Jones et al. (2010) also
succeeded in identifying and tracing filaments in the SDSS survey
which contained manifestly aligned galaxies. In this paper, we use
the MMF to look in more detail at the intrinsic properties of the
web-like structures themselves.

1.4 Intention and outline

We address the cosmic web in terms of its basic morphologies –
clusters, filaments and walls – identified on the basis of the MMF.
We will mainly focus on filaments given the fact that they are the
most prominent components of the cosmic web and largely delineate
its outline. Walls are far less prominent, more tenuous and highly
complex. We will therefore pay less attention to them. In some cases,
we will also include clusters and voids in our analysis but always
in the context of the filament–wall network. Instead of seeking to
provide a comprehensive list of properties of the morphologies in
the cosmic web, this work presents a general view of the cosmic
web from the point of view of their morphological components and
introduces some tools for their characterization. Some of our results
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confirm previous findings, while others have not been presented
before.

This study is organized as follows. In Section 2 we describe
the cosmological simulation on which this work is based, includ-
ing the resampling of the discrete particle set into a regular grid
of density values using the adaptive and morphology preserving
Delaunay tessellation field estimator (DTFE) technique. Section 3
briefly describes the steps followed in the morphological character-
ization of the cosmic web by means of the MMF. Section 4 contains
a qualitative presentation of the various morphological components
of the cosmic web, while the corresponding quantitative inventory
in terms of mass, volume and density is the subject of Section 5.

In Section 6, we proceed to describe the filamentary network
and some of its global properties such as mass function, length
distribution and density profiles. Finally, we summarize our findings
in Section 7.

2 N- B O DY SI M U L AT I O N S A N D H A L O
C ATA L O G U E S

The work presented here is based on a cosmological N-body simu-
lation containing only dark matter particles. The simulation follows
the evolution of a set of particles ‘tracing’ the underlying density
field from a given set of initial conditions until the present time.
We adopted the concordance � cold dark matter (�CDM) cos-
mological model �m = 0.3, �� = 0.7, h = 0.7 and σ 8 = 1.0.
Its size (150 h−1 Mpc) makes it suitable to study large structures
comparable to those seen in present galaxy surveys. The large num-
ber of particles (5123) allows us to achieve a mass resolution of
1.34 × 109 M� h−1 per particle. The mass resolution and simulation
box were chosen as a compromise between a box large enough to
contain a significant amount of large structures and at the same time
the ability to resolve haloes down to a few times 1011 M� (given the
computational resources available). The simulation was performed
using the public version of the parallel Tree-PM code GADGET 2
(Springel 2005), running on eight double processor nodes on the
Linux cluster at the University of Groningen. Initial conditions at
redshift z = 50 with 5123 dark matter particles were generated using
the transfer function given by Bardeen et al. (1986).

2.1 The N-body data

We stored 20 snapshots starting at redshift 9 in logarithmic inter-
vals of the expansion factor until the present time. Additionally, we
generated 2563 and 1283 versions following the ‘averaging’ pre-
scription described in Klypin et al. (2001). These lower resolution
simulations were used to compute the density fields and to get a
preliminary impression of the structures present in the simulation
box (see Table 1).

(i) The low-resolution version (npart = 1283) is used to compute
some properties of filaments such as linear density and for visu-
alization purposes. This resolution per particle of this simulation

allows us to resolve the main features of the large-scale distribution
and at the same time is sparse enough to allow a clear visualization
of the particles (see Fig. 3, later). This is the simulation we use
when (in the following sections) we refer to dark matter particles,
unless we state something different.

(ii) The intermediate resolution (npart = 2563) is used to com-
pute density fields in order to take full advantage of the spatial
information with the computing resources available.

(iii) The high-resolution version (npart = 5123) is used to pro-
duce the HOP and FracHOP halo and subhalo catalogues (see
Section 2.3).

2.2 The density field

The output of the N-body simulation consists of a discrete set of
particles. This is translated into a continuum volume-filling density
field sampled on a regular 3D grid. Crucial for the ability of the
MMF to identify anisotropic features such as filaments and walls
is the use of a morphologically unbiased and optimized continuous
density field retaining all features visible in a discrete galaxy or
particle distribution.

We therefore use the DTFE, introduced by Schaap & van de
Weygaert (2000) [see Schaap (2007); van de Weygaert & Schaap
(2009) for extensive descriptions], to reconstruct the underlying
density field. It uses the Voronoi and Delaunay tessellations of the
particle distribution to obtain an optimal local density estimate and
subsequently interpolate these values linearly over the simulation
volume. For our purpose of detecting web-like features, the DTFE
method has several important characteristics as follows.

(i) The self-adaptive nature of the Delaunay tessellation, and re-
sulting sensitivity to all levels of substructure present in the particle
distribution, makes it highly suited for a multiresolution analysis of
the hierarchically evolved large-scale matter distribution.

(ii) The Delaunay tessellation follows the intrinsic anisotropies
of the spatial matter distribution, resulting in a density field re-
construction which accurately traces and outlines the intricate and
complex spatial patterns in the cosmic web.

(iii) It does not introduce significant artificial features. The main
artefacts concern diffuse low-density tetrahedral wings at the bound-
ary between dense and underdense regions and a rather noisy re-
construction of the underdense regions.

Fig. 2 shows a slice of 25 h−1 Mpc along the z-axis of a sub-box
of 50 × 50 h−2 Mpc2. The top-left panel shows the particle dis-
tribution and the top right-panel shows the corresponding DTFE
density field. A zoomed region is shown in the bottom panel. DTFE
yields a density field reconstruction in which nearly all structures
present in the particle distribution are represented. It finds highly
dense clumps of matter as well as the tenuous voids. Also note
the absence of artificial blobs in the inner regions of the voids. An
additional virtue concerns the absence of a grid-like imprint in the
DTFE density field, even though this is still visible in the particle
distribution.

Table 1. Parameters of the N-body simulation used in this study.

Name Box size �m �� h σ 8 Npart Mpart Softening
( h−1 Mpc) (M�) (kpc)

150High 150.0 0.3 0.7 0.7 1 5123 2.09 × 109 18/6
150Med 150.0 0.3 0.7 0.7 1 2563 1.67 × 1010 36/12
150Low 150.0 0.3 0.7 0.7 1 1283 1.34 × 1011 72/24
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Figure 2. N-body simulation. The particle distribution and density fields of the �CDM simulation, which form the data sample for this study, are shown.
Particles in a slice of 25 h−1 Mpc along the z-axis (top left) and its corresponding DTFE density field (top right) are shown in a logarithmic scale. The bottom
panel shows the zoomed region indicated in the top-right corner of the top-right panel. For details of the simulation, see the text.

Accordingly, DTFE is used to process the particle distribution
into a continuous density field f DTFE (top-right frame in Fig. 2).

2.3 Haloes and subhaloes

We used the HOP group finder (Eisenstein & Hut 1998) for the
identification of self-bound virialized haloes. Each of these haloes
is considered a parent candidate which may contain one or more
subhaloes. HOP links particles by associating each particle with
the densest of its n-closest neighbours, until it finally reaches the
particle that is its own densest neighbour. For allocating particles
to their haloes, we applied HOP with standard parameters δout =
80, δsaddle = 120 and δpeak = 160. Although the groups identified
with HOP are nearly identical to those found with FoF (Davis et al.
1985), they are less prone to involve artificial bridges between close
groups.

Galactic haloes embedded in groups of galaxies and clusters of
galaxies are identified with subhaloes in the computer simulation.
They are the bound groups that are clearly defined against the dif-
fuse background particles that form the halo in which they are
embedded. In order to identify the bound subhaloes inside larger
groups otherwise identified as single virialized objects, we use the
FracHOP algorithm developed by Aragón-Calvo (2007). It is an
elaboration of the HOP halo finder (Eisenstein & Hut 1998) and ex-
ploits the topological properties of nested local maxima smoothed
on a fixed scale. It starts by rerunning HOP, exclusively for the
particles identified with parent haloes in the first HOP halo identi-
fication step. To this end, it uses a Gaussian-smoothed density field
with a kernel size of Rf = 35 h−1 kpc, so that substructure on smaller
scale is suppressed. The subhalo identification is performed without
running REGROUP, so that all particles are assigned to their local
maximum in the smoothed density field. The centre of mass of each
of the resulting candidate subhaloes is determined iteratively, while
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Figure 3. Simulation particle and halo distribution in a slice of 10 h−1 Mpc along the z-axis. The top panels show particles from the 1283 and 2563 simulations
(left and right respectively) in the zoomed region indicated in the top-right panel of Fig. 2. The bottom panels show the haloes identified with HOP (left) and
FracHOP (right). The circles are located at the centre of mass of the haloes. The radius of the circles are scaled with the mass of the halo as r ∝ M1/3.

unbound particles are removed. The end product is a listing of the
subhaloes within the simulation box.

Fig. 3 shows the distribution of particles in the 1283 and 2563

simulations as well as the distribution of HOP and FracHop haloes
plotted on top of the density field. Both HOP and FracHOP haloes
closely follow the patterns of the cosmic web, revealing that haloes
are fair tracers of the large-scale matter distribution. The only dif-
ference between the two is that a given HOP halo can be formed
by several FracHOP haloes. The distribution of haloes delineates
the cosmic web in a more sparse and smooth way compared to the
particles.

3 MO R P H O L O G I C A L S E G M E N TAT I O N :
T HE MMF FORMALISM

The MMF is used for identifying and characterizing the different
morphological elements of the large-scale matter distribution in

the cosmic web (Aragón-Calvo et al. 2007b). The formalism has
been developed on the basis of visualization and feature extraction
techniques in computer vision and medical research (Florack et al.
1992). The technology, finding its origin in computer vision re-
search, has been optimized within the context of feature detections
in medical imaging. Frangi et al. (1998) and Sato et al. (1998) pre-
sented its operation for the specific situation of detecting the web
of blood vessels in a medical image.

The MMF morphological segmentation takes account of the mul-
tiscale nature of the matter distribution by means of a scale-space
analysis, looking for morphological structures of a mathematically
specified type in a multiscale, scale-independent, manner. The scale-
space analysis presumes that the specific structural characteristic
is quantified by some appropriate parameter. Examples are den-
sity, eccentricity, orientation and curvature. The MMF filters these
data to produce a hierarchy of maps having different resolutions
and subsequently selects at each point the dominant parameter
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value from the hierarchy in order to construct a scale-independent
map.

The MMF-based dissection and visualization of the cosmic web
in its three basic components allows us to concentrate on the sig-
nificant features of the cosmic matter distribution and reach a level
of abstraction by avoiding spurious details. For the visualization of
the intricate filament–cluster network, this is particularly useful. In
this section, we briefly summarize the steps involved in the morpho-
logical segmentation of the cosmic web obtained from the N-body
cosmological simulation. A detailed step-by-step description of the
MMF algorithm can be found in Aragón-Calvo et al. (2007b).

3.1 Scale space

The DTFE density field f DTFE is the starting point of the morpho-
logical segmentation. The density field is smoothed over a range
of scales by means of a hierarchy of spherically symmetric Gaus-
sian filters WG having different widths Rn. The nth-level smoothed
version of the DTFE-reconstructed field f DTFE is assigned fn:

fn(x) =
∫

d y fDTFE( y) WG( y, x),

where WG denotes a Gaussian filter of width Rn:

WG( y, x) = 1

(2πR2)3/2
exp

(
−| y − x|2

2R2
n

)
. (1)

Scale space itself is constructed by stacking these variously
smoothed data sets, yielding the family � of smoothed density
maps fn:

� =
⋃

levels n

fn. (2)

A data point can be viewed at any of the scales where scaled data
have been generated. The crux of the concept of scale space is
that the neighbourhood of a given point will look different at each
scale. There are potentially many ways of making a comparison of
the scale dependence of local environment. We address the local
‘shape’ of the density field.

3.2 Local shape

The local shape of the density field at any of the scales Rn in the
scale-space representation of the density field can be quantified on
the basis of the Hessian matrix, H̃ij = ∇ij fn(x):

∂2

∂xi∂xj

fn(x) = fDTFE ⊗ ∂2

∂xi∂xj

WG(Rn)

=
∫

d y f ( y)
(xi − yi)(xj − yj ) − δijR

2
S

R4
S

WG( y, x),

(3)

where x1, x2, x3 = x, y, z and δij is the Kronecker delta. In other
words, at each level n of the scale-space representation the Hessian
matrix is evaluated by means of a convolution with the second
derivatives of the Gaussian filter, also known as the Marr (or, less
appropriately, ‘Mexican Hat’) wavelet. In order to properly compare
the values of the Hessian arising from the differently scaled variants
of the data that make up the scale space, the Hessian is renormalized,
H̃ = R2

S H, where Rs is the filter width that has been used.
The eigenvalues λi of the Hessian matrix determine the local

morphological signal, dictated by the local shape of the density
distribution. A small eigenvalue indicates a low rate of change of
the field values in the corresponding eigendirection and vice versa.

Table 2. Morphology and eigenvalue configuration. The eigenvalue condi-
tions specify clusters, filaments and walls, each having a density higher than
the background. A negative eigenvalue indicates that the feature reaches a
maximum along the corresponding direction (and vice versa), while a small
eigenvalue indicates a low rate of change of the field values in the corre-
sponding eigendirection (and vice versa). This leads to the morphological
relationships listed in this table.

Structure λ ratios λ constraints

Cluster node (blob) λ1 
 λ2 
 λ3 λ3 < 0; λ2 < 0; λ1 < 0
Filament λ1 
 λ2 � λ3 λ3 < 0; λ2 < 0
Sheet λ1 � λ2 
 λ3 λ3 < 0

We denote these eigenvalues by λa(x) and arrange them so that λ1 ≥
λ2 ≥ λ3:∣∣∣∣∂

2fn(x)

∂xi∂xj

− λa(x) δij

∣∣∣∣ = 0, a = 1, 2, 3

with λ1 > λ2 > λ3.

(4)

The λi(x) are coordinate-independent descriptors of the behaviour
of the density field in the locality of the point x and can be combined
to create a variety of morphological indicators. The criteria we
used for identifying a local blob-like cluster, filamentary or sheet-
like morphology are listed in Table 2. Evidently, the eigenvalues
corresponding to a blob (cluster) morphology are a subset of the
eigenvalue subset related to filamentary morphologies. In turn, the
eigenvalue set of the latter is a subset of the wall eigenvalues.

3.3 Multiscale structure identification

In practice, we are interested in the local morphology as a function
of scale. In order to establish how it changes with scale, we evaluate
the eigenvalues and eigenvectors of the renormalized Hessian H̃ of
each data set in the scale space �.

Since we are looking for three distinct structural morphologies –
cluster blobs, walls and filaments – the practical implementation of
the segmentation consists of a sequence of three stages. Because
curvature components are used as structural indicators, the blobs
need to be eliminated before looking for filaments, after which
the filaments have to be eliminated before looking for walls. This
results in the MMF procedure following the sequence ‘clusters →
filaments → walls’. At each of these three steps, the regions and
scales are identified at which the local matter distribution follows
the corresponding eigenvalue signature.

In practice, the MMF defines a set of morphology masks, mor-
phology response filters and morphology filters for each of the three
different morphological components: clusters, filaments and walls.
Their form is dictated by the particular morphological feature they
seek to extract, via the eigenvalues at each level in scale space and
the criteria for each of the corresponding morphologies (Table 2).
The local value of the morphology response depends on the local
shape and spatial coherence of the density field. The morphology
signal 
(x) at each location is then defined to be the one with
the maximum response across the full range of smoothing scales.
Formally, we denote 
 by the name of scale-space map stack.

3.4 Morphology thresholds

The final step in the MMF feature identification concerns the re-
moval of noisy structures. To this end, the MMF invokes global
morphology thresholds in order to separate the texture noise from
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8 M. A. Aragón-Calvo, R. van de Weygaert and B. J. T. Jones

genuine structures (see Aragón-Calvo et al. 2007b). Regions with
a morphology response 
(x) lower than the global threshold τ are
omitted from the list of identified structures.

The value of the thresholds τB, τ f and τw for clusters, filaments
and walls is determined on the basis of the measured dependence
of the structure detection rate as a function of the value of the
morphology signal 
. All clusters with a morphology value less
than the threshold τB are considered to be small insignificant blobs.
The threshold is chosen such that these are erased, but not the large
gravitationally bound clumps. In the case of filaments and walls,
the threshold value is determined on the basis of the percolation
properties of the network of filaments and walls. The threshold
values τ f and τw are defined as the morphology signal value 
 for
which the population of filaments and walls reaches its maximum
number: at lower values, the filaments and walls start to percolate.

In a distribution where all filaments or walls have similar proper-
ties such as contrast and physical extent, this is the perfect choice.
In the real Universe, however, there is a large variation in the con-
trast and size of filaments and walls. The same global criteria are
therefore applied to faint as well as prominent structures. As a re-
sult, there is a systematic inclusion of low-density regions forming
the boundary of faint structures. While most mass is concentrated
in high-density regions, most of the volume of space concerns low-
density regions. As a result, the MMF has some bias towards low-
density structures. This might be alleviated by the use of more
restrictive threshold values. However, this would imply the loss of
very faint structures. A more preferable but as yet not practical ap-
proach would be the use of a local threshold value which would

account for the significance of features within the environmental
context.

3.5 MMF product

The end product of the MMF procedure is a map segmented in
clusters, filaments and walls (Fig. 4). These have been identified
as the most outstanding structures and vary in scale over the full
range of scales represented in scale space (equation 2). Following
the thresholding of the scale-space map stack 
 on the basis of
cosmological and astrophysical considerations, we are left with the
object map O. For each of the different morphologies – clusters,
filaments and walls – these consist of the physically recognizable
objects in the cosmic web.

4 MO R P H O L O G I C A L SE G M E N TAT I O N :
C O S M I C W E B C O M P O N E N T S

Fig. 1 shows the morphological segmentation of the 150 h−1 Mpc
simulation (150Low in Table 1) obtained with the MMF. This figure
illustrates the large-scale distribution of matter as an interconnected
network of filaments (dark grey) defining the boundaries of walls
(light grey), and the clusters (black) located at the intersections of
the network. The spatial distribution for each of the individual mor-
phological components is shown in Fig. 4, by means of isodensity
surfaces (top column) and by means of the particles enclosed by
these surfaces (bottom column).

Figure 4. Top: surfaces enclosing regions of space identified as clusters, filaments and walls in the simulation box (left-hand, middle and right-hand panels,
respectively). Bottom: the particles enclosed by the surfaces in the top panels. Only the largest objects are shown for clarity.
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Multiscale phenomenology of the cosmic web 9

For clarity, Figs 1 and 4 only show the largest structures. In-
cluding all the objects would quickly have produced an image
saturated with walls and filaments. By restricting the number of
structures included, it is easier to identify the individual compo-
nents of the cosmic web. Each morphological component is well
differentiated and occupies, by construction, mutually exclusive re-
gions. The variety of sizes of the clusters is a nice illustration of the
ability of the MMF to identify structures at different scales (also see
Section 4.1).

Careful inspection of Figs 1 and 4 reveals the close physical
affiliation of the different morphological components. Cluster blobs
are located at the tips of filaments, and filaments tend to be found
at the boundaries of walls. This confirms theoretical expectations
(Zel’dovich 1970; Bond et al. 1996).

Following the MMF segmentation of the matter distribution ac-
cording to their intrinsic morphology and scale, it is straightforward

to compute the global properties of each morphological component,
such as mass and volume content. For other properties, such as the
length and density profiles of filaments, additional post-processing
steps are necessary. These analysis procedures will be described
in the next sections. First, we present a qualitative and illustrative
impression of each of the main morphologies, starting with clusters
and followed by filaments and walls.

4.1 Clusters

A more detailed view of the cluster distribution is presented in
Fig. 5. We illustrate the cluster distribution by means of four panels
as follows.

(i) The particle distribution.
(ii) Surfaces defining clusters identified with the MMF.

Figure 5. MMF cluster and halo identifications. (a) All particles inside a sub-box of the simulation. (b) Surfaces enclosing regions identified by the MMF
as clusters. Note that projection effects may distort the real size of the surfaces enclosing clusters. (c) Particles located inside MMF clusters (dark grey). The
rest of the particles are shown in light grey colour. (d) Haloes identified with HOP that have their centre of mass inside regions identified as clusters by the
MMF. The MMF manages to identify the dense clusters at their characteristic scale. This may be seen from panels (c) and (d). The match is reasonably good
(although not perfect due to the intrinsic differences between HOP and the MMF methods).
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10 M. A. Aragón-Calvo, R. van de Weygaert and B. J. T. Jones

Figure 6. Halo identification comparison. Scatter plot of the radius (left) and mass (right) of haloes identified with HOP and the MMF. The radius of the HOP
haloes corresponds to the virial radius

(iii) Particles identified inside the MMF clusters.
(iv) HOP haloes corresponding to the MMF clusters.

The size of the objects seen in the particle distribution as well
as the HOP haloes is related to the size of the clusters identified
with the MMF. The match is not perfect, as one may expect due
to the intrinsic differences between HOP and the MMF. This is
illustrated in Fig. 6, where we compare the radius and mass of
clusters identified with HOP and the MMF.

The radius of HOP clusters is defined as the distance from the
centre of mass to the outermost particle. For the MMF clusters, we
computed the radius from

R =
(

3

4π
Vblob

)1/3

, (5)

where Vblob is the volume of all pixels defining an individual blob
(cluster). The masses of HOP and MMF clusters are well correlated.
This is not surprising, since most of the mass of the cluster is located
in the dense inner regions of the cluster. On the other hand, the
scatter between the radius of HOP and MMF clusters is large. This
is a result of the way in which the radius is estimated. The distance
of the most distant particle from the centre of mass is sensitive
to small fluctuations in the periphery of the clusters. Resolution
effects also influence the estimated radius of MMF clusters, since
the density field grid size is large compared to the radius of the
smallest clusters.

The third major effect which influences the radius estimate of
massive clusters is the often substantial intrinsic elongation of clus-
ters. By virtue of the MMF formalism, clusters identified with the
MMF tend to be spherically symmetric. However, in general the
shape of virialized clusters tends to depart from sphericity, which
can be most clearly observed in computer simulations (see e.g.
Araya et al. 2009). Massive clusters are often highly elongated in
the direction of the filaments connected to them and along which
most merging clumps are moving in (van Haarlem & van de Wey-
gaert 1993). In fact, the infall of matter along the filamentary trans-
port channels amplifies the elongation and alignments of the clus-
ters with respect to the filaments and neighbouring clusters (van
Haarlem & van de Weygaert 1993). The strongest contribution to
this effect is that by the merging of two or more clusters, which
shares the highly anisotropic nature of the more gradual accretion
of most of the matter.

Once all clusters are identified, the corresponding cluster parti-
cles are removed from the particle sample. The cluster-free particle
distribution is subsequently analysed for its filament population.

4.2 Filaments

On the basis of the ‘cluster-free’ particle distribution, we compute
the DTFE density field. This density field only contains structures
associated with filaments and walls and is used as an input for the
identification of filaments in the MMF pipeline.

The 3D visualization allows us to appreciate the 3D nature of the
filaments, in particular also highlighting their connectivity. Fig. 7
shows a 3D view of filaments inside a sub-box with a side of
50 h−1 Mpc. The isosurfaces enclosing regions of space identified
as filaments are shown in the bottom panels. The particles they
contain are shown in the top panels. Note that the regions where
clusters are located (e.g. the large cluster at the top-left corner) are
also covered by the filament mask but that we explicitly exclude
these regions from the filament mask.

Note that there are some small particles and clumps, which ap-
pear to be mostly isolated and bear no relation to the surrounding
structures. These correspond to regions that have a spurious fila-
mentary nature and are near the resolution and filament detection
limit of the MMF. We discard this spurious identification from the
filament mask.

Filaments identified with the MMF are complex objects that per-
vade throughout the sample volume, connecting each of its regions.
The MMF follows the intrinsic scale of the real filaments, which
feature a large range of lengths and widths. The corresponding
filament particle distribution is far from homogeneous: along the
filaments we find dense haloes as well as a pervasive medium of
diffuse particles. It is clear that a description of such complex sys-
tems requires advanced methods of analysis which are sensitive to
the anisotropic and multiscale nature of the matter distribution. The
MMF is an example of such a specifically designed instrument.

4.3 Walls

After removing the particles located inside clusters and filaments
we proceed to the last step in the morphological segmentation, the
identification of walls in the density field. Walls are the most tenuous
coherent structures in the large-scale Universe. Their identification
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Multiscale phenomenology of the cosmic web 11

Figure 7. MMF filaments. 3D stereoscopic view (cross-eyed) of the isosurfaces enclosing filaments (bottom panels) and the enclosed particle distribution (top
panels). The box corresponds to the zoomed region shown in Fig. 3.

poses a major challenge (Shandarin et al. 2004), and their tenu-
ous nature and complex topology and shapes make them the most
difficult morphology to characterize.

Fig. 8 shows a 3D view of the walls inside a volume of 50 h−1 Mpc
size. The top panel shows the particles located within the walls, with
the bottom panels depicting the corresponding walls by means of
isosurfaces. The DTFE density field on the basis of the cluster-
and filament-free particle sample contains only features of a planar
nature, although it also contains various noisy features that cannot
be clearly identified with any of the three basic morphologies.

In general, walls identified with the MMF are far from smooth
planar objects. They tend to have crumpled shapes with no obvi-
ous topology. Because they are multiply connected objects, it is
virtually impossible to isolate individual walls from the complex
web of walls. Evidently, the MMF identifies the walls successfully.
However, as a result of their complex nature, we restrict ourselves
to assessing their basic properties.

5 C O S M I C W E B I N V E N TO RY

5.1 Mass and volume content

In order to understand the role of clusters, filaments and walls in the
shaping of the cosmic web, it is crucial to determine their relative
abundances in terms of volume and mass. Such quantities may
provide rough estimates of the dominance of one morphology with
respect to the other in shaping the cosmic web and driving its overall
dynamics.

Table 3 lists some basic characteristics for each of the morpho-
logical elements. These include an inventory of the cosmic web in
terms of volume and mass content. The mass content of a particular
morphology is measured by adding the total mass of the particles
enclosed within the boundaries of that morphology. The fraction
of the occupied volume is determined by adding the volume of all
voxels enclosed within the morphological boundaries.
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Figure 8. MMF walls. 3D stereoscopic view (cross-eyed) of the isosurfaces enclosing walls (bottom panels) and the enclosed particle distribution (top panels).
The box corresponds to the zoomed region shown in Fig. 3.

Table 3. Inventory of the cosmic web. The volume, mass content and a
few statistical characteristics of the density distribution of the individual
structural morphologies are listed. The mean, median, standard deviation and
kurtosis are computed from the distribution of the overdensity 1+ δ = ρ/ρ.

Clusters Filaments Walls Voids

Volume filling (per cent) 0.4 8.8 4.9 85.9
Mass content (per cent) 28.1 39.2 5.5 27.2
Mean overdensity 73.0 4.5 1.1 0.3
Median overdensity 11.5 1.7 0.9 0.3
Standard deviation 58.8 11.4 2.61 0.52
Kurtosis 58.7 44.8 160.5 142.1

The resulting cosmic inventory is summarized in the pie diagrams
of Fig. 9. The stark contrast between the volume and the mass share
of the clusters, filaments and sheets is a direct manifestation of the
large density differences between the different morphologies and a

direct indication of the dynamical importance of these elements. The
density contrast differences are also an indication for the different
evolutionary stages in which they reside, as gravitational collapse
proceeds faster as we go from walls → filaments → clusters.

Not surprisingly, clusters occupy the smallest volume fraction in
the cosmic web, occupying only 0.38 per cent. Despite this, they
also represent a major share of the cosmic mass: 28 per cent of the
total mass resides within cluster regions. This not only makes them
by far the densest objects of the megaparsec Universe, but also
makes them the dynamically dominant component of the cosmic
web (see e.g. Bond et al. 1996). The largest fraction of the mass in the
Universe, ≈39 per cent, resides in filaments, which occupy around
10 per cent of the total volume. Although their density is lower than
that of clusters, they represent the most salient component of the
cosmic web via their function as the all-pervasive bridges between
all structural features in the megaparsec Universe. Walls contain a
substantially smaller fraction of the mass, ≈5.5 per cent. They also
occupy a relatively small volume, at ≈4.9 per cent, even less than
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Figure 9. Pie diagram showing an inventory of the cosmic web in terms of
volume (top) and mass (bottom). We distinguish clusters, filaments, walls
and void regions (or ‘field’).

that occupied by filaments. It certainly means that walls have been
relatively unimportant in the recent formation history of the cosmic
web.

It is instructive to compare the present-day morphological inven-
tory with that in the primordial density field. On the basis of the
(tidal) deformation tensor distribution in the primordial Gaussian
field Doroshkevich (1970) showed that in the linear regime 92 per
cent of the mass will collapse into walls, filaments or clusters. Fil-
aments and walls would each take 42 per cent of the share, clusters
8 per cent, while the remaining 8 per cent would correspond to
underdense voids. While we may already expect that this direct link
between the primordial deformation tensor and morphology is too
simplistic, it is the subsequent quasi-linear and non-linear evolution
which changes these numbers substantially.

The MMF is a density-field-based criterion and performs bet-
ter as the density field becomes more prominent and non-linear: it
selects only those regions with a clear morphology and contrast.
Following the same deformation tensor criteria with respect to the
primordial density field, Pogosyan et al. (1998) showed that fila-

ments will be much more prominent in the high-density regions,
which tend to develop faster in the subsequent non-linear evolution.
Walls are more biased to lower density regions and at all times will
therefore occur less prominent than filaments. The MMF sensitiv-
ities will therefore be naturally biased towards the filaments and
clusters in the mass distribution. Moreover, the MMF is less likely
to properly identify the outer infall regions of clusters, filaments and
walls and instead tends to relegate part of these to the field as they
have not yet emerged as fully developed structures. Here, for sim-
plicity, we identify these field regions with the larger low-density
voids.

5.2 Density segregation of the cosmic web

The differences in mass and volume content derived for each mor-
phology correspond to different density ranges. It is often assumed
that these elements mark out a unique density regime, with no
overlapping values. This assumption is the basis for the use of over-
density as one of the most widely used criteria to identify clusters
(Lacey & Cole 1994; Eke et al. 1996) and filaments (Shandarin et al.
2004; Dolag et al. 2006).

Fig. 10 shows the cumulative and probability distributions of the
overdensity δ within the regions identified as clusters, filaments,
walls and field. The bottom panel shows that each morphology
occupies a characteristic range in density.

(i) Clusters are the densest objects, with a median overdensity of
∼11.5 and a mean overdensity of ∼73. The range of overdensities
extends to more than δ ∼ 100 and even δ ∼ 1000 within the large
virialized clusters.

(ii) Filaments and walls have medium overdensities, with a mean
overdensity of 〈1 + δ〉 ∼ 4.5 for filaments and 〈1 + δ〉 ∼ 1.1 for
walls and a median overdensity of ∼1.7 and ∼0.9, respectively.

(iii) The field should be mostly identified with the most under-
dense void regions. On average, the void regions correspond to
underdensities of δ ∼ −0.7.

The density values for filaments and walls partially coincide
with the density range expected for collapsed objects, since they
concern values δ ≥ 6 at which spherical objects turn around into
collapse. However, in particular for walls a major fraction of the
enclosed space has a substantially lower density. To a large extent
this concerns the lower density in the outer realms which surround
the dense inner regions of clusters, filaments and walls. There is
also a bias towards low densities in structures identified with the
MMF as a result of the morphology threshold criteria used by the
MMF to separate real and noisy structures (see Section 3.4).

The considerable level of overlap in density between the various
morphologies also means that a pure density criterion for structural
identification does not provide an accurate description of reality. A
morphological segmentation in terms of density alone would require
at least a non-overlapping low-density tail. However, the fact that
this does not seem to be the case implies that there is a substantial
contamination with other morphological elements if one resorts to a
pure density-based criterion: a (global) density threshold would be a
poor discriminator of morphology. Even when each morphology can
be associated with a specific density range, in general an additional,
more sophisticated characterization is required.

The use of the MMF method to disentangle the cosmic web into
its basic morphologies, independent of their density contrast, is
clearly justified by the results presented in Fig. 10. However, we
do have to take care of the fact that the MMF density estimates of
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Figure 10. Cumulative (top) and density (bottom) probability distribution
of the density contrast in clusters (blobs), filaments, walls and the void
regions (dotted, dashed, dot–dashed and solid, respectively). The thick grey
lines indicate the distribution corresponding to all the volume.

filaments and walls tend to be systematically lower than the actual
values (see Section 3.4).

6 FILAMENTS IN THE COSMIC WEB

Without doubt, the most salient features of the cosmic web are
the large filamentary networks, which are interconnected across
tens and even hundreds of megaparsecs. In this section, we focus
specifically on the filaments identified with the MMF and study
their general properties such as length, density profile, connectivity,
etc.

6.1 Filament and wall compression

Filaments and walls have a complex topology. Their general shape
may be far from idealized lines and planes. Properties such as
direction, density profiles, extent and other measures derived from
these quantities are difficult to interpret or meaningless without a
proper reference point. We address this problem by defining their
‘heartline’ in a similar way as the centre of mass in spherical clusters
is used as reference point. We define the 1D and 2D counterparts for

filaments and walls. They will be referred as the ‘spine’ of filaments
and the ‘plane’ of walls, respectively.

In order to infer the idealized lines and planes from the com-
plex filaments and walls, we performed an iterative algorithm that
compresses structures along their perpendicular direction (normal
to the spine of the filament or the plane of the wall) by moving each
particle (or halo) to the centre of mass inside a spherical window
centred on the particle until its position converges. The movement
of the particles is restricted along the perpendicular direction to the
spine of the filament or the plane of the wall (see Appendix A for
details). This procedure enhances filaments and walls compressing
them closer to idealized structures: filaments become 1D lines while
walls are compressed to nearly planar 2D planes (see Fig. A1).

In the determination of spines and planes, we based ourselves
on dark matter haloes instead of particles. Spines and planes de-
rived from the raw dark matter particles tend to cross the centres of
large haloes since they contain most of the matter in the neighbour-
hood. This gives the same result as derived with the use of haloes.
However, in computing the density profile the difference between
particles and haloes can become important. The density profile is
dominated at small scales by large haloes, giving the false impres-
sion of highly dense cuspy cores or even worst, producing several
‘cores’ of a single filament (Colberg et al. 2005a).

6.2 The filamentary network

Fig. 11 shows a slice of the simulation box in which filaments have
been compressed to delineate their spines. Grey circles indicate the
location of clusters with masses above 1014 M� h−1. This figure
presents the cosmic web as a network of interconnected filaments
spread all over the simulation box. The clusters sit at the intersec-
tions or ‘nodes’ of the network. The filamentary network permeates
all regions of space, even the very underdense voids. One important
aspect of the filamentary network is its cellular nature (Joeveer &
Einasto 1978; Zeldovich et al. 1982) which defines a multiscale
system marked by structures over a range of scales (Sheth 2004;
Sheth & van de Weygaert 2004; Shen et al. 2006). Large voids
are delineated by thick large filaments. Each of these voids con-
tains subsystems of smaller filaments delineating smaller mini voids
which in term form the basis for even smaller systems (Dubinski
et al. 1993; Schmidt, Ryden & Melott 2001; Sheth & van de
Weygaert 2004; Shen et al. 2006; Aragón-Calvo et al. 2010). Also,
large empty voids contain extremely tenuous but rich filamentary
systems only seen in high-resolution simulations (van de Weygaert
& van Kampen 1993; Gottlöber et al. 2003; Colberg et al. 2005b).

6.3 Filamentary network: percolation and connectivity

The raw output of the MMF is an object Map O, which defines
which pixels belong to a given morphology (see Aragón-Calvo
et al. 2007b). Given the coherence of the filamentary (and sheet-
like) patterns in the cosmic web, such pixels connect with each other
into large volume pervading complexes. This network connects
filaments of a large variety of sizes, in turn branching into smaller
filaments which are often multiply connected.

Such connectivity information, as well as the individual proper-
ties of filaments, is not explicit in the object map. To this end, we
assess the percolation behaviour of the density field contained in the
filamentary network. This avoids the ambiguity in the segmentation
of morphologies based on density alone (see Section 5.2).

The percolation analysis studies the change in number, prop-
erties and/or connectivity of objects defined as regions of space
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Figure 11. Filamentary network in a slice of 20 h−1 Mpc. Back dots indicate dark matter particles in filaments after the compression algorithm. Grey circles
indicate the location of clusters with M ≥ 1014 M� h−1. The size is scaled proportional to their mass.

above a given density contrast threshold δth ≡ ρth/ρ̄ − 1. By vary-
ing the threshold across the complete range of density values in
the matter distribution, we obtain a systematically evolving popu-
lation of structures, each characteristic for the value δth (Zeldovich
et al. 1982; Shandarin 1983; Shandarin & Zeldovich 1983; Klypin
1988).

We assess the change in filamentary complexes as a function of
the density contrast threshold:

1 + δth ≡
(

4

3
πl3

link

)−1

, (6)

where llink is a linking length between two dark matter particles. By
iteratively associating particles with separations d ≤ llink, we pro-
duce a catalogue of filamentary complexes. This procedure is rather
similar to the identification of clusters using the FoF algorithm. Fol-
lowing their identification, we rank the filamentary configurations
by their mass, i.e. the number of particles they contain. This re-
sults in a mass ordered list consisting of the most massive filament,
second most massive filament, third most massive, etc.

At high densities, filaments are isolated objects with a simple
shape and topology. As the value of δth decreases, the filaments
grow steadily while more mass from their surroundings is added

to them.1 While they grow, they branch into increasingly complex
structures. At some point, at the merging threshold δth ∼ 2, there is
a rather sudden transition in the way the filaments grow. The steady
inclusion of mass from adjacent lower density regions no longer
constitutes the main growth process. Instead, the merging of exist-
ing filamentary complexes into super-filaments becomes the main
mode of structure growth. Descending to even lower densities, the
filaments continue to merge until, rather abruptly, at one particular
density value a single superstructure emerges which spans the entire
volume: this marks the percolation transition. As a result, opposite
faces of the simulation box are connected.

The growth process is illustrated in Fig. 12. It follows the devel-
opment of the 10 most massive filaments along a range of decreasing
density thresholds δ > δth (going from top left to bottom right). The
figure shows the filaments at thresholds 1 + δth = 0.2, 0.4, 0.9, 1.8,
2.9 and 4.2 (from top to bottom and left to right). In order to dis-
tinguish them, each of the filaments is plotted with a different grey
tone, with the lighter shades corresponding to more massive struc-
tures. The panels highlight the non-linear nature of the percolation

1 By restricting ourselves to the filament pixels, the structures remain con-
fined to filaments and do not flood into walls or voids.
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Figure 12. Filament percolation and connectivity. The 10 most massive filamentary structures at different density contrast thresholds, δth = 0.2, 0.4, 0.9, 1.8,
2.9, 4.2 (from top to bottom and left to right). In order to differentiate between them, we plot each structure with a different grey tone. The lighter shades
correspond to more massive structures. See the text for the description.
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Figure 13. Mass of the first up to the 10th largest filaments, in units of the
total mass in the simulation box. The horizontal dotted line indicates the
total mass content in filaments (see Table 3).

process, with the initial gradual growth suddenly transiting into the
merging of filaments and the emergence of super-complexes.

The corresponding growth in mass of the 10 most massive fila-
ments, as a function of threshold density δth, is plotted in Fig. 13. It
depicts the mass fraction of each of these filaments. At high values
of δth, the 10 filaments have similar masses, confirming the im-
pression obtained from Fig. 12. At low, percolating, density values
there is a distinct difference between the largest filament and all
other filaments. Towards the lowest density values, δ ≈ −0.8, the
most massive filament has absorbed the major share of filamentary
objects. It asymptotically attains a mass of ∼40 per cent of the total
mass, which is the entire mass enclosed by the filamentary network
(see Table 3). Meanwhile, the mass of the remaining filaments de-
creases continuously. As their more massive peers get absorbed
into the percolating principal filament, the remaining isolated ob-
jects represent ever smaller specimens of the filament population.

The largest structure in the percolation process, referred to as
the principal percolating filament,2 carries important information
on the topology of the density field (Shandarin et al. 2004). The
principal percolating filament has significantly different properties
than the rest of the (much smaller) filaments. It is a space-covering
network connecting all regions of space and hardly changes signif-
icantly once it has reached the percolation threshold.

6.4 Isolating individual filaments

The ability to recognize individual features such as filaments is nat-
ural to the human brain. However, the analogue for computational
recognition still represents a major challenge. To identify and iso-
late the individual elements forming the interconnected network,
we need to invoke post-processing procedures. This involves the
definition and introduction of user-specified measures.

As we have seen in previous sections, strictly speaking the fila-
mentary network is a system that connects all filamentary features.
In this sense it does not constitute a sample of individual isolated
structures, so that any attempt towards the identification of individ-
ual filaments necessarily involves a level of subjectivity. And even
though the MMF formalism provides us with an objective measure

2 We use the term filament since it is contained inside the filament object
map (see Aragón-Calvo et al. 2007b)

of filamentariness at each position of space, it remains far from triv-
ial for the MMF to dissect the filamentary network into objectively
defined individual filaments.

One strategy to dissect the filamentary network into individual
objects is by exploiting its percolation properties. Following the
argument of Shandarin et al. (2004) that individual objects identified
by means of density thresholds should be studied before percolation
occurs, we use the same principle to select the density threshold for
defining individual filaments.

From Fig. 13 we see that the merging density threshold, below
which the identified features start to merge with each other, is in the
order δth ∼ 1. In practice, we use a somewhat larger value of the
threshold in order to eliminate the possibility of filament mergers via
thin tenuous bridges whose significance might be questioned (this is
a known problem of the FoF algorithm for halo detection; Eisenstein
& Hut 1998). Visual inspection indicates that the differences are
small, a consequence of the restriction to regions identified by the
MMF as filaments. After some experimentation, we use the value
δth = 3 as the density threshold for the identification of individual
filaments.

6.5 Filament classification

Fig. 14 show four examples of typical filaments. For visualization
purposes, we plot dark matter particles taken from the 1283 simu-
lation in grey colour. Superimposed on these, we plot the spine of
the filament by means of the black particles. Haloes delineate the
same structures, be it more diluted. In general, we find that the level
of complexity of filaments is related to the surrounding large-scale
matter configuration. Filaments in the vicinity of massive clusters
form more complex systems than those connected to less massive
clusters.

The fractal nature of the filamentary network makes it difficult to
classify individual filaments since in principle they form a percolat-
ing network that includes all filaments. Also, the branching proper-
ties of our filaments ultimately depend on the resolution limit of our
simulation. This is a natural consequence of the hierarchical devel-
opment of the cosmic web (Sheth 2004; Sheth & van de Weygaert
2004; Shen et al. 2006). Ultra-high-resolution N-body simulations
show that even in the most underdense regions, one can find systems
of tenuous filaments extending along the whole physical extent of
the voids (van de Weygaert & van Kampen 1993; Gottlöber et al.
2003; Platen, van de Weygaert & Jones 2007).

On the basis of a rough phenomenological inventory of the shape
and morphology of the filaments in our simulations, we distinguish
four basic types of filaments.

(i) Line filaments do not have branches (or very few) and are
mostly straight with lengths in the order of 5–20 h−1 Mpc. They are
often found as ‘bridges’ between massive clusters. Shorter filaments
are also straighter than large ones. They may be identified with the
intracluster filaments studied by Colberg et al. (2005a) and filament
Types 0, I and II in the classification of Pimbblet & Drinkwater
(2004).

(ii) Grid filaments are often found crossing vast regions with no
massive clusters crossing them. They form the surrounding ‘net’
enclosing large voids and are almost invariably 2D, suggesting that
walls are in fact delineated by these kind of filaments. Even when
they consist of several branches, one can often identify a main ‘path’
with smaller filaments running almost perpendicular to it.

(iii) Star filaments have a well-defined ‘centre’, usually a cluster
or large group from which several ‘arms’ stretch out. Star filaments
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Figure 14. Filament diversity. Top: three orthogonal projections of typical line (top) and star (bottom) filaments. Dark matter particles are indicated by filled
grey circles. The spine of the filament is also shown, by black dots, in order to better delineate the shape of the filaments. Bottom: three orthogonal projections
of typical grid (top) and complex (bottom) filaments. Dark matter particles are indicated by filled grey circles.

can be considered a smaller version of grid filaments. They are also
2D structures, suggesting that grid and star filaments represent the
same kind of structures.

(iv) Complex filaments do not have a clear shape; they are of-
ten multiply connected and it is difficult to define a main path or
direction. These filaments can be found in almost any environment.

6.6 Length of filaments

While describing filaments in terms of their mass is straightfor-
ward (see Section 6.3), the determination of their length and related
physical properties involves several complications because of the
branching nature of the filamentary network. The length of com-

plex systems composed of several interconnected branches is not
straightforwardly or uniquely defined. One may even argue that it
is a rather meaningless concept in the case of filaments with strong
branching such as grid and star filaments, for which it is almost
impossible to define a main spine.

We may consider various options for the definition of the length
of a filament as follows.

(i) The total length of all the branches of filament, related to the
fractal nature of the filamentary network (Martinez et al. 1990).
Its definition presents several practical complications such as the
identification of the branching points in the main path.

(ii) The length of the main path of the filament (Pimbblet &
Drinkwater 2004; Colberg et al. 2005a). This definition presumes
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the existence of such a main path, whose definition introduces an
arbitrary choice of defining criteria.

Given the high level of complexity of the algorithms used to identify
the total length of filamentary systems, we postpone their study for
future work. Instead, here we concentrate on the length of the main
path of the filament. To first order, this can be identified with the
thickest or longest branch.

We are particularly interested in the length of filaments connect-
ing to clusters. These do not only appear as the nodes of the cosmic
web, but they also define the formation sites of filaments (Bond
et al. 1996). They therefore provide a natural way of dissecting
the filamentary network. Accordingly, we proceed different than in
the percolation-based dissection described in Section 6.4. For the
construction of the filament catalogue, we use the haloes instead
of the dark matter particles to trace the filamentary network. This
has the advantage of being faster when computing the length of the
filaments and of ignoring the irrelevant small details.

We start by collecting all clusters with a mass M ≥ 1014 M� h−1.
Around the locations of these clusters, we cut spheres with a ra-
dius of 2 h−1 Mpc. The filaments contained in these spheres involve
smaller individual objects, which are easier to handle. From this set
of isolated filaments, we produce a catalogue using an FoF algo-
rithm with a linking length corresponding to a density threshold of
δth + 1 = 4. Note that in this way we exclude large superstructures,
as the filaments are broken up at cluster nodes.

To analyse the length of the identified filaments, we use a third-
order polynomial fit to describe and quantify their shape (see Ap-
pendix B for details). Two representative filaments are shown in
Fig. 15, along three mutually orthogonal directions. The best poly-
nomial fit is superimposed on the related halo distribution. The fit
manages to closely follow even the most intricate filaments and also
ignores small branches. This is particularly visible in the case of
the grid filament in the top panel, whose main branch is crossed by
several smaller filaments.

The length and mass distribution of the resulting filament sam-
ple is shown in Fig. 16. Small filaments are clearly more abun-
dant than the large ones, as we may expect for a hierarchically
evolved distribution. Filaments with lengths in excess of a few tens
of megaparsecs are extremely rare. In terms of their mass, we also
see that there are hardly any filaments with masses larger than
∼1014 M� h−1. In other words, while the largest and most massive
filaments are the most prominent structures in the cosmic web, they
represent only a minor fraction of the entire filament population.

6.7 The density profiles of filaments

Filaments are far from being smooth uniform structures. In most
cases it is possible to identify a highly dense spine surrounded by
more diffuse matter. Filaments are also populated by compact dense
haloes. This yields a resemblance of filaments to a pearl necklace,
with haloes suspended along the bridging spine between massive
clusters. Despite the prominence of the inner realms of filaments,
there are only a handful of studies addressing their density profile
with respect to the filament’s spine (e.g. Colberg et al. 2005a; Dolag
et al. 2006). This is even more true for the density distribution of
walls, which has only been addressed in a few theoretical studies
(see e.g. Zel’dovich 1970; Shandarin & Zel’dovich 1989).

Visual inspection of the observed cosmic web reveals that there
are indeed filaments spanning across several tens of megaparsecs.
Examples of these are the ‘spine’ of the Pisces-Perseus superclus-
ter (Gregory, Thompson & Tifft 1981; Giovanelli & Haynes 1985)

Figure 15. Polynomial fit (solid line) of two of the largest filaments in the
simulation. Dark matter haloes are represented by grey circles.

and the planar filamentary system known as the Sloan Great Wall
(Gott et al. 2005; Platen 2009). However, such massive systems are
marked by a substantial degree of substructure, containing numer-
ous clusters and a filigree of small-scale filaments.

In general, large haloes dominate the density profile. This man-
ifests itself in a cuspy profile centred at the spine of the host fila-
ments and even occasionally involving several peaks near the centre.
Following this observation, we use haloes instead of dark matter
particles, thereby avoiding contamination of the radial profile at
small scales. The density profiles of the filaments are determined
by counting the enclosed number of haloes, weighted by their mass,
in bins of increasing radial distance from the spine of the filament.
The radial distance of a halo with respect to the spine of its host
filament is defined as the displacement of a halo before and af-
ter we apply the compression algorithm described in Section 6.1
(see Appendix A for details). To enable the mutual comparison of
the density profiles of all filaments, they are all scaled to a value
N(r = 0) = 1 at the centre of each filament. The resulting den-
sity profile, averaged over all filaments, is shown in the left-hand
panel of Fig. 17. A similar analysis for walls reveals that they have
less well-defined boundaries with widths ranging between 5 and
8 h−1 Mpc.

The average filament profile has a power-law shape, N(r) ∝ r−2,
beyond a radius of r ∼ 2 h−1 Mpc. For a 1D entity like a filament,
this implies that mass is no longer attached to the filament at larger
radii. In other words, the radius of r ∼ 2 h−1 Mpc marks the average
maximum extent of a filament. Within this range, the profile turns to
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Figure 16. Probability density distribution of length (top panel) and mass
(bottom panel) of filaments (see the text for details). Only filaments with
more than 10 haloes were considered.

a power-law shape with a slope γ ≈ −1, which corresponds roughly
to an isothermal profile for a filamentary entity. The profile slope
transition at around r ∼ 2 h−1 Mpc provides a simple criterion for
defining the width of filaments. The fact that there appears to be

only a small variation in this width (see Fig. 17) means that we may
have some confidence in using this one particular value.

To provide an impression of the variation in the density distribu-
tion around filaments, we show the density profile for 15 individual
filaments in the right-hand panel of the same figure. While the in-
dividual profiles differ, their variation is restricted to a rather small
range. We also find some variation in the maximum extent of fila-
ments, which confirms the impression obtained from the observed
cosmic web and had already been noted in previous studies (Colberg
et al. 2005a; Dolag et al. 2006).

6.8 Cluster bridges

Filaments are closely affiliated to clusters. According to the cosmic
web theory (Bond et al. 1996), filaments are the transport chan-
nels along which clusters accrete mass (see van Haarlem & van
de Weygaert 1993; Diaferio & Geller 1997; Colberg et al. 1999).
Massive clusters are formed at the sites of rare high-density peaks
in the primordial matter distribution (Bardeen et al. 1986) and dom-
inate the dynamical evolution of the cosmic matter distribution.
Particularly in the high-density areas, the overwhelming coherent
gravitational tidal forces between two cluster peaks are responsible
for anisotropic collapse of the surrounding matter towards elongated
filaments (Bond & Myers 1996; Bond et al. 1996). The strength of
the filamentary bridges is expected to depend on the mass of the
generating cluster, their mutual distance and their mutual orientation
(Bond et al. 1996). This has been confirmed by numerous numer-
ical simulations (see e.g. Colberg, Krughoff & Connolly 2005a;
Sousbie, Colombi & Pichon 2009; Gonzalez & Padilla 2010). A vi-
sual assessment of observations as well as simulations also suggests
that the more prominent clusters are associated with filamentary sys-
tems of a higher complexity (Colberg et al. 1999, 2005a; Pimbblet
& Drinkwater 2004).

Fig. 18 shows three examples of groups and clusters with masses
in the range of 1013–1014 M� h−1. A first impression is that massive
clusters appear to be embedded within a more complex filamentary
environment. On the basis of this figure, we may make a few direct
observations:

(i) The top panel shows a cluster connected to two filaments. Its
mass, M ∼ 1013 M� h−1, is characteristic for a group of galaxies

Figure 17. Filament density profile. Left: average enclosed density profile of haloes inside a filament. The dotted line corresponds to a power-law fit N(r) ∝
r−2. Right: density profiles of 15 individual filaments. Superimposed (thick grey line) is the average enclosed density profile. To enable their mutual comparison,
all density profiles are scaled to a value N(r = 0) = 1 at the centre of the filament.
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Figure 18. Three examples of clusters and the filaments to which they
are connected. The three clusters have masses in the range of 1013–
1014 M� h−1. Top: a group-like cluster, with M ∼ 1013 M� h−1, con-
nected to two filaments. Middle: a medium-sized cluster, with M ∼ 2–3 ×
1013 M� h−1, connected to several filaments. Bottom: a massive cluster,
with M ∼ ×1014 M� h−1, at the centre of a highly complex environment of
filamentary branches.

consisting of a few tens of galaxies. Such filaments may be the result
of a gravitationally induced fragmentation of a longer filament. The
infall pattern of matter into these clusters is highly anisotropic and
is mainly restricted to the direction of the connecting filaments.

(ii) The cluster in the middle panel has a mass of M ≈ 2–3 ×
1013 M� h−1. It is connected to several filaments. It is also indicative
of the fact that we find several other clusters in its vicinity.

(iii) The cluster in the bottom panel is embedded in a highly
complex environment. Several filaments can be seen branching in
a range of different directions. It is not possible to identify a main
filament to which the cluster is connected.

Following these observations along with others obtained from the
simulation, we find that the number of filamentary extensions of a
cluster is closely related to the mass of the cluster.

6.8.1 Cluster mass and filament connections

In order to quantify the relation between the mass of a cluster and
the number of connected filaments, we used the filament catalogue
described in Section 6.6. To this end, we applied the following
criteria.

(i) A filament is connected to a cluster if it has at least one halo
within a sphere of a radius of 3 h−1 Mpc from the centre of the
cluster.

(ii) Only clusters with M ≥ 1014 M� h−1 were considered in our
analysis.

Fig. 19 suggests an almost linear relation between the mass of
a cluster and the number of filaments that are connected to the
cluster, although the dispersion around the relation is rather large.
The most massive clusters, the ones with a mass in excess of M ∼
1015 M� h−1, may form a node connecting to five or even six dif-
ferent filaments. Low-mass clusters with a mass of ≤1014 M� h−1,
on the other hand, tend to have rather simple connections of two
and not more than three filaments.

The figure suggests that some clusters may even have only one
filament connected to them. However, this is not observed in the
cosmic web and would be difficult to justify from a physical point
of view. It is mainly the result of the method used to assign filaments

Figure 19. Cluster mass and filament connections. The figure plots the mean
number of filaments, 〈N〉, connected to a cluster as a function of the mass
Mcl of the cluster (solid line). The dotted line indicates the 1σ dispersion of
the data around the mean (see the text).
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Table 4. Inventory of the cosmic web in terms of volume and mass content.

Clusters (per cent) Filaments (per cent) Walls (per cent) Voids (per cent)

Volume filling 0.38 8.79 4.89 85.94
Mass content 28.1 39.2 5.45 27.25
Relative density 73 4.45 1.11 0.31

to clusters, which may in some situations miss a few faint filaments
which would be connected to these low-mass clusters.

The large dispersion in Fig. 19 reflects the complexity of the
cosmic web. The final matter configuration in the neighbourhood of
a cluster depends not only on its mass but also on the geometrical
configuration of the surrounding clusters (Bond et al. 1996). Other
studies have found a similar relation based on intracluster filaments
found in N-body simulations (Colberg et al. 2005a) and visually
identified filament–cluster connections from the 2dF galaxy survey
(Pimbblet & Drinkwater 2004).

7 C O N C L U S I O N S

We provide a qualitative and quantitative description of the cosmic
web in terms of its morphological constituents. We focused on
filaments, to a lesser degree on walls. The basis for this work is a
large N-body simulation of a �CDM cosmology with dark matter
particles. The morphological segmentation was done with the MMF.

(i) The mass content, volume content and mean density of the
cosmic web are quantitatively summarized in Table 4.

(ii) Each morphology of the cosmic web has a characteristic
density. The distribution of densities however, has a large overlap.
Density alone can give an indication of the morphology, but it
cannot be used to unambiguously segment the cosmic web into its
morphological constituents.

(iii) We offer a qualitative classification of filaments based on
their visual properties in four types: line, star, grid and complex.

(iv) The density profile of filaments indicates that their typical
radial extent is of the order of 2 h−1 Mpc, although there are signif-
icant variations between filaments. In their interior, filaments have
a power-law density profile with slope γ ≈ −1, corresponding to
an isothermal density profile.

(v) We find a relation between the mass of a cluster and the
number of filaments it has connected. More massive clusters have
more filaments in average. Clusters with a mass of ∼1014 M� h−1

have on average two connecting filaments while clusters with a mass
of ∼1015 M� h−1 have on average five connecting filaments.

Having analysed and described the structure of the filamentary
network, in the subsequent paper we will address the velocity flows
and the dynamics of the network and of individual clusters. Also, we
plan to experiment with the MMF detection technique, and instead
of addressing the multiscale character of the density field develop
a version based on the dynamically more relevant gravitational
potential field.

In a related study (Jones et al. 2010), we have applied the MMF to
detecting filaments in the SDSS galaxy redshift survey and identified
edge-on galaxies within their realm. This allowed us to address
and answer the question whether there are significant alignments of
galaxy spins along the spine of the SDSS filaments. This is expected
following the tidal torque theory for galaxy angular momentum
generation. The MMF indeed allowed us to identify a subset of
galaxies and filaments conforming to a significant alignment.

The application of the MMF to real galaxy surveys introduces a
few important additional challenges. One aspect concerns the survey
volume selection. While a volume-limited survey would guarantee
an ideal homogeneous coverage, in practice it involves a severe re-
duction of spatial resolution and hence the feasibility of identifying
crucial aspects of the anisotropic features in the cosmic web. For
magnitude-limited galaxy redshift surveys, the DTFE density field
reconstruction enables a correction for the diminishing sampling
density at higher density. None the less, an appropriate MMF web
analysis will still be restricted to the more densely sampled regions
out to the peak of the radial survey selection function. A recent
meticulous analysis by Platen et al. (2010) has assured us that our
web analysis tool box can be successfully tuned towards controlling
this issue.

An additional artefact that may severely affect the identification
of filaments is the imprint of redshift distortions. The large peculiar
motions in and around the virialized cluster cores generate artificial
radially directed elongated features, better known as the Fingers of
God. In practice, we remove all filaments within a limiting angle
ηc around the line of sight. Jones et al. (2010) show that this suc-
cessfully recovers a statistically proper filament distribution. Large-
scale cosmic flows are known to enhance the contrast of anisotropic
filamentary features (see e.g. Shandarin 2009). However, a proper
correction for this would at least demand a densely sampled envi-
ronment so that one may model the corresponding force field. This
work is in progress and has not yet been implemented in our tool
box.
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Chazal F., Cohen-Steiner D., Mérigot Q., 2009, INRIA Rapport de
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APPENDIX A : FILAMENT AND WA LL
COMPRESSION

In order to enhance filaments and walls and to morph them closer to
idealized lines and planes, we developed a compression algorithm.
The algorithm displaces particles in the direction of increasing den-
sity, towards the spine of the filaments or the planes that define the
walls. The algorithm can be applied to particles as well as to haloes,
after weighing them by their mass.

The compression procedure exploits the information produced
by the MMF. Not only does it identify the filaments and walls in
the cosmic web, but also their local direction represented by the
eigenvectors of the Hessian matrix (see Aragón-Calvo et al. 2007b;
Section 3). The smallest eigenvector of the Hessian matrix traces the
local direction of a filament, while the largest eigenvector locally
defines the normal to the wall. This information is exploited to
iteratively displace particles to the local centre of mass within a
given radius. It is a widely used method for computing the centre
of mass in spherical or semispherical haloes (van den Bosch 2002).

We start by defining the heartline of filaments and walls in a way
similar to determining the centre of mass in spherical haloes. This
heartline is used as a reference point. The 1D and 2D heartlines for
filaments and walls are referred to as the spine of the filaments and
the plane of the walls, respectively.

Our compression algorithm involves the crucial constraint that
the displacement of particles to the centre of mass follows the
direction perpendicular to the filament or wall. As a result, this
process transforms thick structures into thin lines or planes without
affecting their length.

In summary, the algorithm has the following steps (for simplicity,
we only refer to particles; haloes will be treated equivalently).

Figure A2. Illustration of the compression steps for an individual galaxy.
It shows how the galaxy is displaced towards a position on the heartline of
the filament, along a direction perpendicular to the filament in which it is
embedded.

(i) For each particle i we find all neighbours inside a top-hat
window of a given radius Rtop, centred at the particle’s position xi .
The top-hat radius should be large enough to enclose the filament
or wall in order to minimize the number of iterations needed.

(ii) The centre of mass mi of the particles inside the top-hat
window is computed, along with the vector defined by the particle’s
position and the centre of mass mi .

(iii) The particle is displaced to the centre of mass along the
perpendicular direction of the filament/wall:

p = (e ∗ m) ∗ e sin(θ ), (A1)

where e is the vector indicating the direction of the spine of the
filament or the normal to the plane of the wall. The angle θ is the
angle between the vector e and the centre of mass m (see Fig. A2).

The eigenvectors e are computed from the Hessian matrix
smoothed at the characteristic scale of filaments, ∼2–3 h−1 Mpc
(see Section 6.7).

(iv) After having performed the process for all particles, we
compute the dispersion between the ‘original’ and ‘compressed’

Figure A1. Filament compression illustrated. Haloes in filaments before (left) and after (right) the application of the compression algorithm. Haloes are
indicated as white circles whose sizes are scaled according to their mass. The grey background delineates the density field plotted in a logarithmic scale.
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positions. We repeat the complete process until the dispersion be-
tween consecutive iterations changes by a given factor or until the
total dispersion is less than a prescribed value. This value specifies
the convergence of the method.

The compression algorithm is rather insensitive to the size of the
top-hat window, which may be in the range of Rth ∼ 1–5 h−1 Mpc
for filaments and Rth ∼ 2–8 h−1 Mpc for walls. The lower limit
depends on the mean interparticle separation, because there must
be at least two particles inside the search window in order to displace
the particle. The maximum value of Rth depends on how close the
filaments and walls are to each other. If we would chose for a larger
radius, particles from adjacent structures would be included which
would invalidate the compression procedure.

We continue the compression algorithm recursively until the
dispersion between consecutive compressed positions is less than
0.25 h−1 Mpc. It is important to note that in the compression algo-
rithm, we only account for particles contained in the morphological
population under consideration.

APPENDIX B: LENGTH O F FILAMENTS

The determination of the length of filaments involves two steps.
The first is the compression of the filaments, following the proce-
dure outlined in Appendix A. The second step consists of fitting a
polynomial to the particle or halo distribution along the filament.

By fitting to a polynomial, we smooth the small-scale variations
that may remain following the compression procedure. If we would
not include this step, and instead chose to add the segments of
the minimum spanning tree defined by the particle distribution, we
would end up with a filament whose size would be larger than is
strictly representative.

As a compromise between simplicity and the ability to follow
intricate and complex filament shapes, we chose to use polynomials
of the third order. A visual inspection of several filaments assured
us that the third-order polynomials are indeed sufficient for mod-
elling even the most intricate filaments. They manage to follow each
change in direction.

The positions r i = (xi, yi, zi) of each of the particles/haloes i
belonging to a filament are fitted to a polynomial of the form

x = a1 + b1t + c1t
2 + d1t

3 ,

y = a1 + b1t + c1t
2 + d1t

3 ,

z = a1 + b1t + c1t
2 + d1t

3 , (B1)

Figure B1. Identification of the extreme of a filament. The fitting curve
(grey line) is closely sampled at points a, b, c, d, e. Haloes are represented
as large black dots. The closest halo to points a, b, c and d is halo 1. At
point e, the closest halo changes to halo 2 indicating that the fitting curve is
‘inside’ the filament.

where the parameter t is defined as the distance from an arbitrary
location (x0, y0, z0):

t =
√

(x − x0)2 + (y − y0)2 + (z − z0)2. (B2)

In practice we chose a set of values for (x0, y0, z0), usually the
corners of the simulation box, and select the one that gives the best
fit according to the criterion of having the smallest mean square
difference:

ε = 1

N
χ 2. (B3)

If ε turns out to be larger than a given threshold, whose value is
determined by means of experimentation, we reject the fit.

One technical difficulty remaining is the determination of the
extreme points of the filament for the fitting curve. This is a non-
trivial task, and if not considered properly may lead to wrong length
determinations. We follow a simple but effective method to identify
the extremes, as follows.

(i) The polynomial curve is closely sampled and distances to all
the particles in the filament are computed starting from one extreme
of the fitted curve.

(ii) For each point in the fitting curve, the closest halo is identi-
fied.

(iii) We identify the point in the fitting curve at which the identity
of the closest halo changes. This indicates that the fitting curve is
no longer ‘outside’ the filament but ‘inside’ it (see Fig. B1).

(iv) We repeat the procedure for the second extreme of the fitting
curve.

Following the previous steps, the fitted polynomial is used to com-
pute the length of the filament.
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